Assignment 8.

1. Let $I=\int_{2}^{5} \frac{5}{x+\sqrt{6-x}} \mathrm{~d} x$.
(a) Using the substitution $u=\sqrt{6-x}$, show that

$$
I=\int_{1}^{2} \frac{10 u}{(3-u)(2+u)} \mathrm{d} u
$$

(b) Hence show that $I=2 \ln \left(\frac{9}{2}\right)$.
2. Let $f(x)=\frac{7 x+18}{(3 x+2)\left(x^{2}+4\right)}$.
(a) Express $f(x)$ in partial fractions.
(b) Hence find the exact value of $\int_{0}^{2} f(x) \mathrm{d} x$.
3. The diagram shows the curve $y=x^{\frac{1}{2}} \ln x$. The shaded region between the curve, the x-axis and the line $x=\mathrm{e}$ is denoted by R.

(a) Find the equation of the tangent to the curve at the point where $x=1$, giving your answer in the form $y=m x+c$.
(b) Find by integration the volume of the solid obtained when the region R is rotated completely about the x-axis. Give your answer in terms of π and e.
4. (†) $\int \frac{\ln x \mathrm{~d} x}{\left(1+x^{2}\right)^{\frac{3}{2}}}$

Total mark of this assignment: $32+8$.
The symbol $(\boldsymbol{\dagger})$ indicates a bonus question. Finish other questions before working on this one.

